Express changing quantities in terms of derivatives. To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related quantities that are changing with respect to time. This can be solved using the procedure in this article, with one tricky change. Therefore, ddt=326rad/sec.ddt=326rad/sec. All tip submissions are carefully reviewed before being published. During the following year, the circumference increased 2 in. For example, if we consider the balloon example again, we can say that the rate of change in the volume, \(V\), is related to the rate of change in the radius, \(r\). We recommend performing an analysis similar to those shown in the example and in Problem set 1: what are all the relevant quantities? While a classical computer can solve some problems (P) in polynomial timei.e., the time required for solving P is a polynomial function of the input sizeit often fails to solve NP problems that scale exponentially with the problem size and thus . % of people told us that this article helped them. You need to use the relationship r=C/(2*pi) to relate circumference (C) to area (A). citation tool such as, Authors: Gilbert Strang, Edwin Jed Herman. A guide to understanding and calculating related rates problems. Note that when solving a related-rates problem, it is crucial not to substitute known values too soon. Related Rates Examples The first example will be used to give a general understanding of related rates problems, while the specific steps will be given in the next example. Word Problems Note that the equation we got is true for any value of. State, in terms of the variables, the information that is given and the rate to be determined. The balloon is being filled with air at the constant rate of \(2 \,\text{cm}^3\text{/sec}\), so \(V'(t)=2\,\text{cm}^3\text{/sec}\). For example, if the value for a changing quantity is substituted into an equation before both sides of the equation are differentiated, then that quantity will behave as a constant and its derivative will not appear in the new equation found in step 4. Find the radius of the sphere when the volume and the radius of the sphere are increasing at the same numerical rate. Diagram this situation by sketching a cylinder. Using these values, we conclude that ds/dtds/dt is a solution of the equation, Note: When solving related-rates problems, it is important not to substitute values for the variables too soon. Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities. In terms of the quantities, state the information given and the rate to be found. Find relationships among the derivatives in a given problem. A 10-ft ladder is leaning against a wall. We compare the rate at which the level of water in the cone is decreasing with the rate at which the volume of water is decreasing. Find dxdtdxdt at x=2x=2 and y=2x2+1y=2x2+1 if dydt=1.dydt=1. Kinda urgent ..thanks. The variable ss denotes the distance between the man and the plane. The diameter of a tree was 10 in. / min. Solving Related Rates Problems The following problems involve the concept of Related Rates. What are their values? {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/e\/e9\/Solve-Related-Rates-in-Calculus-Step-1-Version-4.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-1-Version-4.jpg","bigUrl":"\/images\/thumb\/e\/e9\/Solve-Related-Rates-in-Calculus-Step-1-Version-4.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-1-Version-4.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/8\/86\/Solve-Related-Rates-in-Calculus-Step-2-Version-4.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-2-Version-4.jpg","bigUrl":"\/images\/thumb\/8\/86\/Solve-Related-Rates-in-Calculus-Step-2-Version-4.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-2-Version-4.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/0\/08\/Solve-Related-Rates-in-Calculus-Step-3-Version-4.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-3-Version-4.jpg","bigUrl":"\/images\/thumb\/0\/08\/Solve-Related-Rates-in-Calculus-Step-3-Version-4.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-3-Version-4.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/e\/ec\/Solve-Related-Rates-in-Calculus-Step-4-Version-4.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-4-Version-4.jpg","bigUrl":"\/images\/thumb\/e\/ec\/Solve-Related-Rates-in-Calculus-Step-4-Version-4.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-4-Version-4.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/0\/00\/Solve-Related-Rates-in-Calculus-Step-5-Version-4.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-5-Version-4.jpg","bigUrl":"\/images\/thumb\/0\/00\/Solve-Related-Rates-in-Calculus-Step-5-Version-4.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-5-Version-4.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/9\/96\/Solve-Related-Rates-in-Calculus-Step-6.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-6.jpg","bigUrl":"\/images\/thumb\/9\/96\/Solve-Related-Rates-in-Calculus-Step-6.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-6.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/b\/b1\/Solve-Related-Rates-in-Calculus-Step-7.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-7.jpg","bigUrl":"\/images\/thumb\/b\/b1\/Solve-Related-Rates-in-Calculus-Step-7.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-7.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, Solving a Sample Problem Involving Triangles, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/0\/00\/Solve-Related-Rates-in-Calculus-Step-8.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-8.jpg","bigUrl":"\/images\/thumb\/0\/00\/Solve-Related-Rates-in-Calculus-Step-8.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-8.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/2\/2a\/Solve-Related-Rates-in-Calculus-Step-9.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-9.jpg","bigUrl":"\/images\/thumb\/2\/2a\/Solve-Related-Rates-in-Calculus-Step-9.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-9.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/c\/c3\/Solve-Related-Rates-in-Calculus-Step-10.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-10.jpg","bigUrl":"\/images\/thumb\/c\/c3\/Solve-Related-Rates-in-Calculus-Step-10.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-10.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/c\/ce\/Solve-Related-Rates-in-Calculus-Step-11.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-11.jpg","bigUrl":"\/images\/thumb\/c\/ce\/Solve-Related-Rates-in-Calculus-Step-11.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-11.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/d\/d1\/Solve-Related-Rates-in-Calculus-Step-12.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-12.jpg","bigUrl":"\/images\/thumb\/d\/d1\/Solve-Related-Rates-in-Calculus-Step-12.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-12.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/a\/a9\/Solve-Related-Rates-in-Calculus-Step-13.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-13.jpg","bigUrl":"\/images\/thumb\/a\/a9\/Solve-Related-Rates-in-Calculus-Step-13.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-13.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, Solving a Sample Problem Involving a Cylinder, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/e\/e3\/Solve-Related-Rates-in-Calculus-Step-14.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-14.jpg","bigUrl":"\/images\/thumb\/e\/e3\/Solve-Related-Rates-in-Calculus-Step-14.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-14.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/e\/e9\/Solve-Related-Rates-in-Calculus-Step-15.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-15.jpg","bigUrl":"\/images\/thumb\/e\/e9\/Solve-Related-Rates-in-Calculus-Step-15.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-15.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/4\/43\/Solve-Related-Rates-in-Calculus-Step-16.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-16.jpg","bigUrl":"\/images\/thumb\/4\/43\/Solve-Related-Rates-in-Calculus-Step-16.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-16.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/c\/c0\/Solve-Related-Rates-in-Calculus-Step-17.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-17.jpg","bigUrl":"\/images\/thumb\/c\/c0\/Solve-Related-Rates-in-Calculus-Step-17.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-17.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/3\/36\/Solve-Related-Rates-in-Calculus-Step-18.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-18.jpg","bigUrl":"\/images\/thumb\/3\/36\/Solve-Related-Rates-in-Calculus-Step-18.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-18.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}, {"smallUrl":"https:\/\/www.wikihow.com\/images\/thumb\/1\/13\/Solve-Related-Rates-in-Calculus-Step-19.jpg\/v4-460px-Solve-Related-Rates-in-Calculus-Step-19.jpg","bigUrl":"\/images\/thumb\/1\/13\/Solve-Related-Rates-in-Calculus-Step-19.jpg\/aid5019932-v4-728px-Solve-Related-Rates-in-Calculus-Step-19.jpg","smallWidth":460,"smallHeight":345,"bigWidth":728,"bigHeight":546,"licensing":"

License: Creative Commons<\/a>
\n<\/p>


\n<\/p><\/div>"}. Let \(h\) denote the height of the water in the funnel, r denote the radius of the water at its surface, and \(V\) denote the volume of the water. Show Solution Related Rates: Meaning, Formula & Examples | StudySmarter Math Calculus Related Rates Related Rates Related Rates Calculus Absolute Maxima and Minima Absolute and Conditional Convergence Accumulation Function Accumulation Problems Algebraic Functions Alternating Series Antiderivatives Application of Derivatives Approximating Areas The original diameter D was 10 inches. For example, in step 3, we related the variable quantities x(t)x(t) and s(t)s(t) by the equation, Since the plane remains at a constant height, it is not necessary to introduce a variable for the height, and we are allowed to use the constant 4000 to denote that quantity. Since the speed of the plane is \(600\) ft/sec, we know that \(\frac{dx}{dt}=600\) ft/sec. One specific problem type is determining how the rates of two related items change at the same time. Direct link to aaztecaxxx's post For question 3, could you, Posted 7 months ago. then you must include on every physical page the following attribution: If you are redistributing all or part of this book in a digital format, Step 3. Step 1: Draw a picture introducing the variables. The volume of a sphere of radius rr centimeters is, Since the balloon is being filled with air, both the volume and the radius are functions of time. This will be the derivative. To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related quantities that are changing with respect to time. Direct link to 's post You can't, because the qu, Posted 4 years ago. It's 10 feet long, and its cross-section is an isosceles triangle that has a base of 2 feet and a height of 2 feet 6 inches (with the vertex at the bottom, of course). Let \(h\) denote the height of the rocket above the launch pad and \(\) be the angle between the camera lens and the ground. Find the rate at which the area of the triangle is changing when the angle between the two sides is /6./6. The problem describes a right triangle. What are their units? What is the rate of change of the area when the radius is 10 inches? Example 1 Air is being pumped into a spherical balloon at a rate of 5 cm 3 /min. We want to find ddtddt when h=1000ft.h=1000ft. Step 3: The asking rate is basically what the question is asking for. Our mission is to improve educational access and learning for everyone. Since we are asked to find the rate of change in the distance between the man and the plane when the plane is directly above the radio tower, we need to find ds/dtds/dt when x=3000ft.x=3000ft. What is the instantaneous rate of change of the radius when \(r=6\) cm? Except where otherwise noted, textbooks on this site The keys to solving a related rates problem are identifying the variables that are changing and then determining a formula that connects those variables to each other. "the area is increasing at a rate of 48 centimeters per second" does this mean the area at this specific time is 48 centimeters square more than the second before? From the figure, we can use the Pythagorean theorem to write an equation relating \(x\) and \(s\): Step 4. Find an equation relating the quantities. { "4.1E:_Exercises_for_Section_4.1" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "4.00:_Prelude_to_Applications_of_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.01:_Related_Rates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.02:_Linear_Approximations_and_Differentials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.03:_Maxima_and_Minima" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.04:_The_Mean_Value_Theorem" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.05:_Derivatives_and_the_Shape_of_a_Graph" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.06:_Limits_at_Infinity_and_Asymptotes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.07:_Applied_Optimization_Problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.08:_LHopitals_Rule" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.09:_Newtons_Method" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.10:_Antiderivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "4.11:_Chapter_4_Review_Exercises" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Functions_and_Graphs" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Limits" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Applications_of_Derivatives" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Applications_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Techniques_of_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Introduction_to_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Sequences_and_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Power_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Parametric_Equations_and_Polar_Coordinates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Vectors_in_Space" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Vector-Valued_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Differentiation_of_Functions_of_Several_Variables" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Multiple_Integration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Vector_Calculus" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Second-Order_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Appendices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "related rates", "authorname:openstax", "license:ccbyncsa", "showtoc:no", "program:openstax", "licenseversion:40", "source@https://openstax.org/details/books/calculus-volume-1", "author@Gilbert Strang", "author@Edwin \u201cJed\u201d Herman" ], https://math.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FCalculus_(OpenStax)%2F04%253A_Applications_of_Derivatives%2F4.01%253A_Related_Rates, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Inflating a Balloon, Problem-Solving Strategy: Solving a Related-Rates Problem, Example \(\PageIndex{2}\): An Airplane Flying at a Constant Elevation, Example \(\PageIndex{3}\): Chapter Opener - A Rocket Launch, Example \(\PageIndex{4}\): Water Draining from a Funnel, 4.0: Prelude to Applications of Derivatives, source@https://openstax.org/details/books/calculus-volume-1.


I Tell You, Forster, My Lamp's Gone Out, Crater Festival 1976 Lineup, Articles H